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The mean-field free-energy based lattice Boltzmann method (LBM) is developed for the calculation of
liquid–vapor flows in channels. We show that the extensively used common bounceback boundary con-
dition leads to an unphysical velocity at the wall in the presence of surface forces that arise from any local
forces such as gravity, fluid–fluid and fluid–solid interactions. We then develop a mass-conserving veloc-
ity-boundary condition which eliminates the unphysical velocities. An important aspect of the overall
LBM model is the inclusion of the correct physics to simulate different wall wettabilities and dynamic
contact lines. The model is applied to static and dynamic liquid–vapor interfacial flows and compared
to theory. The model shows good agreement with three well established theories of contact line
dynamics.
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1. Introduction

The characterization of immiscible liquid–vapor interfaces at
solid surfaces is important in a wide range of fundamental topics
ranging from boiling, condensation, transport of liquid–vapor mix-
tures in microchannels, electrowetting, with applications in power
generation, refrigeration/air-conditioning, optoelectronics, and in
biotechnology. Under static conditions, molecular attraction be-
tween solid–liquid–vapor phases results in a three-phase contact
line which is adequately described by Young’s law relating the
equilibrium contact angle to the intermolecular forces or the sur-
face tension forces between the three phases. Under dynamic con-
dition, on the other hand, the contact line moves resulting in
advancing and receding contact angles, which are not known a pri-
ori. Molecular dynamics (MD) simulations have been used success-
fully to resolve many details of moving contact lines at the
molecular scales, such as the work by Allen and Tildesley (1987),
De Ruijter et al. (1999), Barrat and Bocquet (1999) and Qian et al.
(2003, 2004). However, MD is limited to nanoscales and computa-
tionally demanding even for fundamental research problems. Con-
tinuum methods, on the other hand, have the potential to describe
moving contact lines on macroscopic length- and time-scales.
However, classical discontinuous interface methods (e.g. Hirt and
Nichols, 1981; Unverdi and Tryggvason, 1992a,b; Osher and Sethi-
an, 1988; Sethian 1996) with a no-slip boundary condition lead to
a stress-singularity at the moving contact line (Dussan, 1979; De
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Gennes, 1985). To resolve the singularity, the no-slip boundary
condition has to be relaxed to a slip boundary treatment in the
framework of the Navier–Stokes equations through an empirical
relation between the contact angle and the slipping velocity
(Shkhmurzaev, 1997; Oron et al., 1997), limiting the predictive
capability of discontinuous methods.

Unlike discontinuous interface methods, diffuse interface meth-
ods (Antanovskii, 1995; Jasnow and Vinals; 1996; Anderson et al.,
1998; Jacqmin, 1999, 2000; Jamet et al., 2001) are based on the ex-
plicit recognition that phase interfaces undergo a rapid but smooth
transition of the physical quantities of the bulk phases, making the
interfaces directly resolvable, at least in theory, in a numerical cal-
culation. While all the discontinuous interface methods have their
foundations in hydrodynamics, liquid–vapor systems, on the other
hand, require a thermodynamic basis to facilitate evaporation and
condensation between the two phases. The diffuse interface meth-
ods, which are based on the mean-field representation of the free-
energy of the fluid, provide a thermodynamically consistent and
numerically simple framework to deal with liquid–vapor phase
transitions (condensation and evaporation), interface capillarity,
and hydrodynamics. In addition, complex topological changes in
the liquid–vapor interface can be accommodated with much great-
er ease within the framework of the diffuse interface method.

A number of two-phase diffuse interface methods have been
developed under the umbrella of lattice Boltzmann methods
(LBMs) (Gunstensen et al., 1991; Shan and Chen, 1993, 1994; Swift
et al. 1995, 1996; He et al., 1998, He and Doolen, 2002; Luo, 1998;
Zhang et al., 2004; Li and Tafti, 2007). LBM, which has its origins in
lattice-gas cellular automata and can also be derived from the con-
tinuous Boltzmann equation, operates in the mesoscopic regime on
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Fig. 1. D2Q9 lattice configuration.
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particle distribution functions on a lattice. Hence for engineering
applications it is a good compromise between continuum simula-
tions at the macro-scales, where much of the micro-physics is
averaged out, and molecular dynamics calculations which are lim-
ited to process length and time scales at most in the nanometer
and nanosecond range, respectively.

Central to many of the LBM methods for calculating two-phase
flows, however, is the use of the nonlocal pressure equation based
on the square-gradient theory (Swift et al., 1995, 1996; He et al.,
1998; He and Doolen, 2002). In the square-gradient theory, the
free-energy density of fluid is represented by two components, one
pertaining to the homogeneous energy density of the bulk fluid
phases from classical equilibrium thermodynamics and the second
due to the inhomogeneous or molecular attractive forces between
dissimilar phases, which is represented by the square of the gradient
of fluid density following van der Waals (Rowlinson, 1979) and Cahn
and Hilliard (1958). The nonlocal pressure equation of the square-
gradient theory (Rowlinson, 1979; Swift et al., 1995; He and Doolen,
2002) thus includes the square of fluid density gradient term.

It is recognized that the square-gradient theory poses some lim-
itations on the description of phase interfaces near a solid wall
(Sullivan, 1981; Van Giessen et al., 1997; Zhang et al., 2004). In
micorchannels and sub-microchannels, the solid walls or the wet-
tabilities of the solid walls are a critical factor in determining the
interfacial flows. When a solid boundary exists, the impenetrable
solid wall imposes a discontinuity on the fluid density near the
wall. In practical implementation, it is not easy to obtain realistic
contact angles and fluid density distributions near a wall based
on the square-gradient theory. Briant et al. (2002, 2004) have ap-
plied the square-gradient theory based LBM and studied the mov-
ing contact line dynamics. During their simulation, they fixed the
contact angle a priori and do not allow it to change based on the
flow dynamics. On the other hand, different investigations (Zhang
et al., 2004; Li and Tafti, 2006) have shown that this limitation of
the square-gradient theory can be overcome with an integral rep-
resentation of the free-energy.

The objective of the two part paper is to investigate the evolu-
tion of flow interfaces or flow regimes encountered in a sub-micro-
channel for near-critical CO2 as the working fluid. In this paper we
incorporate the more general and consistent integral expression of
the nonlocal pressure of liquid–vapor interfacial flows developed
in Li and Tafti (2007) into D2Q9 LBM. In addition, we show that
in the presence of surface forces, the commonly used bounceback
boundary condition leads to significant unphysical velocities at
walls. To overcome this shortcoming, we develop a consistent mass
conserving velocity-boundary condition for the D2Q9 lattice con-
figuration in the presence of surface forces. The numerical results
presented in this paper establish that the D2Q9 LBM with the
new boundary condition has the capability to successfully simulate
static and dynamic liquid–vapor interfaces and contact line
dynamics with different wall wettabilities.

2. Mean-field free-energy D2Q9 LBM

For completeness, first, we briefly summarize the integral
expression of the nonlocal pressure equation developed for
liquid–vapor interfacial flows (Li and Tafti, 2007). This nonlocal
pressure equation is based on a more general expression of the to-
tal Helmholtz free-energy for liquid–vapor interfacial flows in the
framework of the mean-field theory (van Kampen, 1964; Sullivan,
1981; Rowlinson and Widow, 1982) as follows:

H ¼
Z

X
w½nðrÞ�d3rþ 1

4

Z Z
X

wðr; r0Þ½nðr0Þ � nðrÞ�2 d3rd3r0 ð1Þ

In the above equation, H is the total Helmholtz free-energy of the
whole liquid–vapor system; w(n) is the local free-energy density;
n is the local fluid density; and X represents the volume of the
whole liquid–vapor system. r and r

0
in the equation are two spatial

location vectors. The first term on the right-hand side of the above
equation represents the free-energy due to the homogeneous en-
ergy density of the bulk fluid phases from classical equilibrium
thermodynamics. The second term is the mean-field representation
of the free-energy due to the attraction between molecules
accounting for inhomogeneities of fluid density at liquid–vapor
interfaces. The interparticle pairwise attraction potential �w(r, r

0
)

is everywhere non-positive. For a homogeneous system, the second
term reduces to zero and Eq. (1) equates the free-energy derived
from equilibrium thermodynamics.

Based on the free-energy expression of Eq. (1), the nonlocal
pressure equation for liquid–vapor interfacial flow is obtained by
Li and Tafti (2007) as

p½nðrÞ� ¼ nw0 � w� n
Z

X
wðr; r0Þ½nðr0Þ � nðrÞ�d3r0

� 1
4

Z
X

wðr; r0Þ½nðr0Þ � nðr0Þ�2 d3r0 ð2Þ

where w0 is the derivative of the local free-energy density w to the
local fluid density n. For a homogeneous fluid system, the last two
terms reduce to zero and Eq. (2) equates the pressure equation of
equilibrium thermodynamics.

Under the assumption of slow density variations across the li-
quid–vapor interface, Li and Tafti (2007) have shown that the non-
local pressure equation expressed by Eq. (2) reduces to, and is
consistent with the nonlocal pressure equation of the square-gra-
dient theory used in many LBM methods for calculating two-phase
flows (Swift et al., 1995, 1996; He et al., 1998; He and Doolen,
2002). Therefore, Eq. (2) is a more general expression of the non-
local pressure equation. As mentioned earlier in this paper, the
integral form of the nonlocal pressure equation eliminates the lim-
itations of the square-gradient theory on the description of phase
interfaces near a solid wall.

To incorporate the nonlocal pressure into D2Q9 LBM, we start
with the D2Q9 lattice Boltzmann BGK equation (Chen et al.,
1991; Qian et al., 1992):

fiðxþ ei; t þ 1Þ � fiðx; tÞ ¼
1
s
½f eq

i ðx; tÞ � fiðx; tÞ�; i ¼ 0;1;2; . . . ;8

ð3Þ

where t and s are the time step and the relaxation time of particle
collision. x and ei represent the lattice site location vector and the
direction vector in ith lattice link, respectively. fi(x, t) is the particle
distribution function and f eq

i ðx; tÞ is the equilibrium particle
distribution.

D2Q9 lattice configuration is shown in Fig. 1. The nine vectors of
the lattice links are documented as follows:

e0 ¼ ½0;0� ð4Þ
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ei ¼
Dr
Dt

cos
p
2
ði� 1Þ; sin

p
2
ði� 1Þ

h i
; i ¼ 1;2;3;4 ð5Þ

ei ¼
Dr
Dt

ffiffiffi
2
p

cos
p
2
ði� 1Þ þ p

4

h i
; sin

p
2
ði� 1Þ þ p

4

h ih i
; i ¼ 5;6;7;8

ð6Þ

where both Dr and Dt are the lattice length and time step, respec-
tively. The sound speed of the D2Q9 lattice model cs is

c2
s ¼

1
3

c2 ¼ 1
3

Dr
Dt

� �2

¼ RgT ð7Þ

where Rg is the gas constant; c is the lattice fluid particle velocity;
and T is the temperature.

The equilibrium particle distribution is given by Qian et al.
(1992) and Chen et al. (1992) as

f eq
i ¼ win 1þ 3ei � uþ

9
2
ðei � uÞ2 �

1
2

u � u
� �

; i ¼ 0;1;2; . . . ;8 ð8Þ

where u is the equilibrium velocity and wi ( i = 0, 1, . . ., 8) are the
weighting factors accounting for the variation of different lengths
of the lattice links. The weighting factors have the following values
to recover the Navier–Stokes equations:

w0 ¼
4
9

ð9Þ

wi ¼
1
9
; i ¼ 1;2;3;4 ð10Þ

wi ¼
1

36
; i ¼ 5;6;7;8 ð11Þ

From the above definition, following the standard Chapman–Enskog
procedure, the Navier–Stokes-like equations for a liquid–vapor sys-
tem are recovered, having the fluid density n, velocity v, and viscos-
ity as follows:

n ¼
X8

i¼0

fi ð12Þ

nv ¼
X8

i¼1

fiei þ
1
2

F ð13Þ

m ¼ Dr2

3Dt
ðs� 0:5Þ ð14Þ

The nonlocal pressure expressed by Eq. (2) is incorporated into
D2Q9 LBM through a fluid–fluid force term Fff defined as follows
(Zhang et al., 2004):

Fff ¼ �r p nðrÞ½ � � c2
S nðrÞ

� �
ð15Þ

In general, the force F on a fluid particle in multiphase flow
includes

F ¼ Fff þ Fsf þ Fo ð16Þ

where Fsf is solid–fluid attraction and Fo represents other possible
external forces such as gravity and electrical forces. The total force
F is then incorporated into the LBM through the equilibrium veloc-
ity u (Shan and Chen, 1993, 1994) as:

nu ¼
X8

i¼1

fiei þ sF ð17Þ

Eqs. (2)–(17) complete the definition of the mean-field free-en-
ergy D2Q9 LBM for liquid–vapor interfaces.

2.1. Numerical implementation

To implement the LBM numerically, a representation of the lo-
cal free-energy density w(n) is needed. The expression of free-en-
ergy in mean-field theory given by van Kampen (1964) is used
for this purpose,

wðnÞ ¼ nkbT ln
n

1� bn
� an2 � nkbT ð18Þ

where a and b are the van der Waals constants, which are specified
as a = 9/49 and b = 2/21 in the Part I of this paper, and kb is the
Boltzmann constant. Eq. (18) leads to the well-known van der
Waals equation of state:

p0 ¼ nw0 � w ¼ nkbT
1� bn

� an2 ð19Þ

where p0 is the bulk phase pressure.
The interparticle attraction potential �w(r, r

0
) for D2Q9, similar

to the treatment for D2Q7 as documented in Li and Tafti (2007), is
approximated as

�wðr; r0Þ ¼
�K; jx0 � x0j ¼ Dr

�Kf K; jx0 � xj ¼
ffiffiffi
2
p

Dr

0; jx0 � xj ¼ others

8><
>: ð20Þ

where �K is the constant representing the effective fluid–fluid
attraction potential when the distance from one fluid particle to an-
other is at the unit lattice length |x

0 � x
0
|=Dr. x and x0 represent the

different lattice site location vectors. Kf is the decay factor of the
attraction potential when the interaction distance changes from
Dr to

ffiffiffi
2
p

Dr. Like the simulations with D2Q7 by Li and Tafti
(2007), we use K = 0.01 for all the simulations in the Part I of this
paper.

The solid–fluid attraction force Fsf is simulated in a manner con-
sistent with the fluid–fluid interaction. The wall is considered as a
solid phase with the constant density ns and the attraction for each
solid–fluid pair of particles is then similarly expressed as:

Fsf ðxs;xf Þ ¼
�KnsðxsÞnðxf Þðxf � xsÞ; jx0 � xj ¼ Dr

�KKf nsðxsÞnðxf Þðxf � xs; jx0 � xj ¼
ffiffiffi
2
p

Dr

0; jx0 � xj ¼ others

8><
>: ð21Þ

where ns(xs) is the density of the solid wall at the location xs.
Using the following expression:

KW ¼ KnsðxsÞ; ð22Þ

Eq. (21) becomes

Fsf ðxs;xf Þ ¼
�KW nðxf Þðxf � xsÞ; jx0 � xj ¼ Dr

�Kf KW nðxf Þðxf � xsÞ; jx0 � xj ¼
ffiffiffi
2
p

Dr

0; jx0 � xj ¼ others

8><
>: ð23Þ

Thus, Eq. (23) includes only one constant KW, which represents the
specific properties of a solid wall in the interaction with the fluid on
its surface, the strength of molecular solid–fluid attraction or the
wettability.

3. Velocity-boundary condition with external force

In this section, we first show that an unphysical velocity exists
with the widely used bounceback boundary treatment when a sur-
face force is present. To clearly describe the problem, we examine
the dynamics of fluid particles inside a domain (away from the
boundary). In the LBM procedure, Eq. (17) displays that an external
force F is incorporated into the LBM through the equilibrium veloc-
ity u. In general, a lattice Boltzmann equation represents the
streaming and collision processes of fluid particles, as shown by
Eq. (3). In the current LBM, F does not explicitly act on fluid parti-
cles during the streaming and collision processes. Instead, it acts
through the equilibrium distribution functions f eq

i ðx; tÞ as defined
in Eq. (8). On a boundary of the domain, on the other hand, the
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Fig. 2. D2Q9 lattice configuration on a solid wall.
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fluid particle convection and collision processes are not simulated
through the lattice Boltzmann equation (Eq. (3)) and f eq

i ðx; tÞ. In-
stead, the common bounceback boundary condition is extensively
used to deal with wall boundaries. Mathematically, the common
bounceback boundary condition gives a zero sum of the following
vectors:

X8

i¼1

fiei ¼ 0 ð24Þ

We can see that satisfying Eq. (24) through the bounceback condi-
tion does not yield zero velocity or a no-slip condition on a wall in
the presence of surfaces force F as shown by Eq. (13). The bounce-
back condition applied to Eq. (13) leaves behind a generally non-
zero unphysical velocity F/2n. As shown in Eq. (16), the force F in-
cludes fluid–fluid attraction Fff, solid–fluid attraction Fsf, and other
possible external forces Fo such as gravity and electrical forces. At a
solid boundary node, in addition to fluid–fluid attraction, there is a
solid–fluid attraction, which represents the wettability of the solid
wall. Both of these forces are non-zero. The magnitude of this
unphysical velocity due to the wettability can be estimated by
applying Eq. (23), resulting in an unphysical velocity of KW/2. It will
be shown later in this paper that KW can be any value from 0.0 to
0.010 or even larger to express the complete wetting range from
non-wetting to a completely wetting wall. Therefore, the magnitude
of the unphysical velocity could be as large as that equivalent to the
Mach number Ma � 0.1. This is not a trivial velocity in incompress-
ible, microchannel flow, especially for many engineering applica-
tions where many solid surfaces are highly wetting surfaces, that
is, KW usually takes on large values.

It is noted that this unphysical velocity due to the bounceback
boundary condition is not caused by the choice of the implementa-
tion method of the external force term, F into the LBM. In the liter-
ature, there are three common ways to incorporate a force term into
LBM. One is the same as the current LBM, through Eq. (13). Another
method is adding a force term directly to the lattice Boltzmann
equation. The third method is a combination of the above two,
including the force term in the lattice Boltzmann equation plus
defining an equilibrium velocity similar to Eq. (13). We have shown
that all three approaches produce a similar unphysical velocity on
the wall in the presence of a surface force. Hence the following
development has a broad range of applicability. It is noted that
the unphysical velocity discussed above due to the common
bounceback boundary condition is different from the ‘‘slip velocity”
of bounceback boundary treatments discussed frequently in the lit-
erature, such as Lee and Lin (2005). The unphysical velocity found in
the current paper is only related to the existence of external forces
and does not change with the relaxation time of the LBM. When no
external force is present, such as a single phase flow of an ideal fluid
without gravity and no wettability as well as fluid–fluid attraction
considered, the unphysical velocity disappears.

The idea of Zou and He (1997) is applied here to solve the problem
of the above unphysical velocity on the solid boundary. For single
phase flow, Zou and He (1997) have proposed a velocity–pressure
boundary condition. Their idea is to solve a system of equations con-
sisting of the unknown particle distribution functions on the bound-
ary in conjunction with a bounceback condition for a partially
unknown particle distribution function(s). For the non-slip bound-
ary condition of a static wall or a moving solid boundary, the flow
velocity on the wall is known and imposed on the solid boundary.
When the fluid velocity is unknown on a boundary, such as an inlet
or outlet of a channel, the pressure (which is equivalent to density in
single phase flow) can be specified on the boundary as a replace-
ment. In the development of the velocity–pressure boundary condi-
tion, Zou and He (1997) did not consider situations in which an
external force is present at the boundary.
According to our theoretical development process, we describe
the new boundary condition in two layers. The first layer is an
application of Zou and He’s idea to a boundary with surface force
to eliminate the unphysical velocity. The second layer is a further
improvement over the first layer. Fig. 2 shows the D2Q9 lattice
aligned with a bottom wall. For the lattice site ‘‘P” on the bottom
wall, there are nine particle distribution functions, f0, f1, f2, f3, f4,
f5, f6, f7, and f8, the same as that inside the domain. Among the nine,
f0, f1, f3, f4, f7, and f8 are known after a streaming step, while the
rest, f2, f5, and f6 come from outside the domain and therefore
are unknown and need to be defined.

Eq. (13), which includes the external force term, gives

f5 � f6 ¼ nVx � f1 þ f3 þ f7 � f8 � Fx=2 ð25Þ
f5 þ f6 ¼ nVy � f2 þ f4 þ f7 þ f8 � Fy=2 ð26Þ

where Vx and Vy are two components of the velocity vector V, that is
Vxix + Vyiy = V.

Because we have three unknowns f2, f5, and f6; we need another
equation together with the above two to close the problem. In the
velocity–pressure boundary condition, Zou and He (1997) further
assume that the non-equilibrium part of the particle distribution
function in the wall normal direction, f2 satisfies the bounceback
condition. In the present study, we could use the same non-equi-
librium bounceback condition to close the equation system. How-
ever, our numerical tests have shown that letting f2 itself satisfy
the bounceback condition generates the equivalent results. Be-
cause the bounceback condition of f2 itself is simpler, this treat-
ment is used to replace the non-equilibrium bounceback condition.

With f2 defined and the velocity V specified on the solid wall
(V = 0 for a static solid wall, for example), Eqs. (25) and (26) yield

f5 ¼ ðnVx þ nVy � f1 � f2 þ f3 þ f4 þ 2f 7 � Fx=2� Fy=2Þ=2 ð27Þ
f6 ¼ ð�nVx þ nVy þ f1 � f2 � f3 þ f4 þ 2f 8 þ Fx=2� Fy=2Þ=2 ð28Þ

The fluid density n on the boundary is then obtained through Eq.
(12) as:

n ¼ f0 þ f1 þ f2 þ f3 þ f4 þ f5 þ f6 þ f7 þ f8 þ f9 ð29Þ

Eqs. (27)–(29) together with the bounceback condition for f2

complete the definition of the boundary condition for D2Q9, which
resolves the issue of the unphysical velocity on the wall when a
surface force is present. For a static solid wall, the non-slip bound-
ary condition can be implemented directly from the three Eqs.
(27)–(29). For a moving wall, on the other hand, the unknown den-
sity n on the wall is coupled in the equations and thus the bound-
ary condition is implemented through solving the three coupled
equations. It is further noted that with the new boundary condi-
tion, the equilibrium distribution functions f eq

i ðx; tÞ and the colli-
sion process defined by the lattice Boltzmann equation are
applied equally to both internal and boundary nodes.

In our numerical simulations, the above developed boundary
condition gives good results in simulating static liquid–vapor
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interfaces. However, our numerical results (presented later) reveal
that there is a net mass flux across the solid wall, especially near a
contact line for solid–liquid–vapor interfaces. These errors result
from the non mass conservation at each instant even though a zero
velocity on the solid wall is realized on a time-average level during
the combined particle streaming and collision process. For clarity,
we call the above developed boundary condition as BC1 while the
following improved boundary condition as BC2.

While BC1 guarantees zero relative velocity of fluid on the wall
in the averaged sense or on the mesoscopic/macroscopic level, the
following improvement of BC2 is to impose mass conservation on
the microscopic level: At every time step in the LBM, the mass con-
servation is imposed on the microscopic levels of the fluid particle
activities, collision and convection. In BC1, we invoke the assump-
tion that f0 does not change before and after the particle collision.
In BC2, instead, we define f0 after the collision step according to the
mass conservation of all particle functions on each lattice site. Dur-
ing a full LBM time step, f0, f4, f7, and f8 leave the domain at the in-
stant t+0, while the fluid particles f0, f2, f5, and f6 enter the domain at
the instant (t + 1)�0. The mass conservation at this lattice site
requires:

f0 ¼ f t
0 þ f t

4 þ f t
7 þ f t

8 � ðf2 þ f5 þ f6Þ ð30Þ

Thus, we have four equations (27)–(30) for the five unknowns
f0, f2 f5, f6, n. These four equations with the bounceback condition
for f2 define the mass-conserving velocity-boundary condition.

For a moving solid wall, the unknown functions f0, f5, f6, n are
obtained by solving Eqs. (27)–(30). For a static solid wall, on the
other hand, f5 and f6 are first obtained by Eqs. (27) and (28). f0 is
then obtained by substitution of f2, f5, and f6 into Eq. (30). The fluid
density n on the wall is then calculated through Eq. (29).

For other walls of a flow domain, such as top wall, left and right
side wall, the mass conservation velocity-boundary condition can
be implemented in a similar way to that for the bottom wall.

4. Numerical results and verifications

We use Laplace law of capillarity to test the capability of the D2Q9
LBM model in simulating static liquid–vapor interfaces. We simulate
droplets on a wall with different wettabilities to verify the capability
in simulating different static contact angles. In addition, we use cap-
illary waves and moving contact lines to verify the capability of the
D2Q9 LBM model for simulating dynamic interfaces for both liquid–
vapor interfaces and solid–liquid–vapor interfaces.

4.1. Laplace law of capillarity

For a droplet in vapor, the 2D Laplace’s law of capillarity states:

Pin � Pout ¼
c
R

ð31Þ

where Pin and Pout are the fluid pressures inside and outside the
droplet; c is the surface tension and R is the radius of the droplet.

With D2Q7 LBM, we have used Laplace law to verify the mean-
field free-energy nonlocal pressure equation and its LBM (Li and Taf-
ti, 2007). In the present context, consequently, our focus is on exam-
ining the difference between D2Q9 and D2Q7, that is, the change of
the interparticle potential with different spaced lattice sites, as ex-
pressed by the decay factor Kf in the potential in Eq. (20). In the liter-
ature, different researchers use different values for the decay factor
Kf. Most of them take Kf to be either 1/2 or 1/4. In fact, fluid–fluid
interaction of many fluids can be well approximated by the well-
known Lennard-Jones potential, which is:

wL-Jðr0 � rÞ ¼ 4e
r

r0 � r

	 
12
� r

r0 � r

	 
6
� �

ð32Þ
where e and r are physical constants, which are chosen to some
specific values according to the fluids simulated. The first term of
the right-hand side in the above equation is the repulsive potential,
while the second term is the attraction potential. According to Len-
nard-Jones potential, Kf = 1/8 appears appropriate when the lattice
distance changes from Dr to

ffiffiffi
2
p

Dr. This result is different from what
is generally used in the literature.

To find an appropriate value of the decay factor Kf for the cur-
rent LBM, we perform numerical simulations with Kf = 1/2, 1/4,
1/8, and 1/16, respectively. The temperature of the liquid–vapor
system in the simulations is kbT = 0.55. A periodic boundary condi-
tion is applied on the four sides of the simulation domain. For the
present purpose, we simulate the domain with the dimension of
128 � 128, using the relaxation time s = 1. Our simulations start
with a rectangular block of liquid located in the middle of the do-
main with the saturated vapor distributed everywhere else over
the domain. As the calculation proceeds, the droplet evolves from
its initial rectangular shape to a circular shape at around 1500 iter-
ations. Beyond the time step 1500, the shape of the droplet
changes little, similar to the results of D2Q7 LBM (Li and Tafti,
2007). This indicates that the convergence speed of D2Q9 is about
the same as that of D2Q7. The spurious residual velocity of the cur-
rent simulations, however, attains the order 10�9 at the time step
10,000 over the whole simulation domain, which is three orders of
magnitude lower than that of D2Q7.

Fig. 3 shows the pressure differences inside and outside of the
droplets with different droplet sizes simulated to the time step
10,000. The figure also displays the results with the four different
values of Kf. In the figure, the solid circles, triangles, squares, and
hollow circles represent the results with Kf = 1/2, 1/4, 1/8, and
1/16, respectively. The four solid lines are the linear correlations
of the respective LBM results for the different Kf factors. The results
show that the pressure difference across the droplet increases lin-
early with the decrease of the droplet radius for all four Kf factors,
indicating that the LBM simulations with the different factors all
represent the linear characteristic of the Laplace law very well.

According to the Laplace law, the slope of the correlation line in
Fig. 3 gives the surface tension of the liquid–vapor system, which
yield c = 0.00760, 0.00825, 0.00860, and 0.00880 for Kf = 1/2, 1/4,
1/8, and 1/16, respectively. The exact solution of the surface ten-
sion based on the mean-field theory gives c = const�hb (Van Giessen
et al., 1998), where c is the surface tension of a planar interface; h
is a normalized temperature, h = (Tc � T)/Tc; Tc represents the crit-
ical temperature; the analytical mean-field theory gives b = 3/2.
For the LBM fluid at kbT = 0.55, the surface tension is 0.00824 (Li
and Tafti, 2007), which is very close to the result with Kf = 1/4.
Hence, the surface tension of the present simulations with Kf = 1/
4 is consistent with the analytical solution of mean-field theory,
different Kf factors.
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and in all later simulations with D2Q9, therefore, we use the con-
stant Kf = 1/4.

4.2. Capillary waves

Capillary waves are used to validate the D2Q9 LBM in simulat-
ing the dynamic characteristics of liquid–vapor interfaces without
a solid wall. According to the theory of capillary waves (Lamb,
1945 and Landau and Lifshitz, 1987), the dispersion relation be-
tween the wave frequency x and wave number k is given by:

x2 � k3 ð33Þ

The simulations are conducted at the temperature kbT = 0.53 on
a rectangular domain. Both the left and right sides of the domain
are treated with periodic boundary conditions while a non-slip, so-
lid boundary condition is imposed on the top and bottom walls.
The simulations start with the initial conditions of zero velocity
with the saturated liquid and vapor distributed in the lower and
upper half of the domain, respectively. The LBM iterations are per-
formed until an equilibrium planar interface is formed and the
density profile across the interface shows little change. At this
time, a single-period sine wave is imposed on the planar interface
and the evolution of the interface location is then recorded. The
wave number of the simulated domain is determined by the width
of the domain ‘ as

k ¼ 2p
‘

ð34Þ
Table 1
Simulation summary: domain height �h, width ‘, wave number k, period Ť, and
frequency x.

Case 1 2 3 4 5 6

‘ 31 41 51 61 71 81
�h 150 200 250 300 350 400
k 0.20268 0.15325 0.1232 0.103 0.0885 0.07757
Ť 180 300 440 480 600 880
x 0.03491 0.02094 0.01428 0.01309 0.01047 0.00714

t=0 t=50 t=90

Fig. 4. Snapshots of capillary waves at different time steps, kbT = 0.53, Case 1, ‘ = 31, �h
complete wave period (Dt = 180). Additional two snapshots are the intermediate wave
The present simulations include six different domains as sum-
marized in Table 1. The dimensions of the domains are chosen by
considering the following requirements: (a) the domain height �h
is much bigger than the wave length ‘ such that ‘‘shallow water”
effects are negligible; (b) the wave length is much larger than
the wave amplitude, such that it is consistent with the assumption
of small amplitude wave theory; and (c) the wave amplitude is
much larger than the interface thickness, such that the changes
of wave amplitudes are clearly distinguishable.

The capillary waves are displayed according to the density con-
tour line at the averaged fluid density. Fig. 4 displays the snapshots
of capillary waves at several typical time steps of a complete wave
period. The results are shown for case 1 listed in Table 1, where the
domain width is ‘ = 31 and the domain height is �h = 150. The rela-
tive time step Dt shown in Fig. 4 is counted from the time step
when the sine wave is just imposed on the planar interface. The fig-
ure includes the snapshots at the start (Dt = 0), the middle
(Dt = 90), and the end (Dt = 180) of a complete wave period. The
rest of the snapshots are intermediate wave profiles. The results
indicate that the period of the capillary wave is Ť = 180, which
has an uncertainty of ±9 time steps as the data is recorded at every
10 time steps in the simulations. Based on the wave period ob-
tained, the wave frequency is then obtained as 0.03491. Table 1 in-
cludes the wave numbers and frequencies for all cases studied.
Fig. 5 displays the LBM results shown in Table 1 in solid dots.
The solid line in the figure is the linear correlation of the six LBM
points, which yields the line slope as 1.524. The exact solution of
the slope, as shown in Eq. (33) is 1.50 and the error between the
simulations and the exact solution is less than 2%.

4.3. Droplets on walls with different wettabilities

This section examines the capability of the current LBM to re-
solve static droplets on solid walls with different wettabilities,
from completely non-wetting to fully wetting. A domain with
100 � 200 units is simulated, with a periodic boundary condition
applied to the two sides (left and right) of the domain. The non-slip
boundary condition is imposed on the bottom solid wall while a
symmetric boundary condition is used on the top of the domain.
 t=140 t=180 

= 150; the snapshots at the start (Dt = 0), the middle (Dt = 90), and the end of a
profiles.
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Our simulations are performed at two temperatures, kbT = 0.51 and
0.53 and with the relaxation time s = 1. The simulations start with
the initial velocity of zero specified everywhere over the domain,
with a small square block of liquid placed at the bottom of the do-
main with the rest of the domain specified as the saturated vapor.
The liquid–vapor system attains the equilibrium states at around
6000 time steps after which the droplet shape and interface den-
sity profile change little. To obtain smaller spurious residual veloc-
ity, the iterations are continued to the time step 10,000, where the
Fig. 6. Fluid density contou
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Fig. 7. Mass flux across solid wall at diff
maximum spurious residual velocity is at the level of 10�7–10�8

over the whole domain.
To compare the two new boundary conditions BC1 and BC2 pro-

posed earlier, we simulate the problem with the two boundary
conditions separately. Figs. 6 and 7 are the results with boundary
condition BC1 applied on the bottom wall. Fig. 6 is the fluid density
contour obtained at the time step 10,000, with KW = 0.04, and at
kbT = 0.53. In the figure, the black and white colors represent the
liquid and vapor density, respectively. The gray scales between
the two represent the density change in the liquid–vapor interface.
The figure displays the geometry of the liquid–vapor interface and
the solid–liquid–vapor three-phase contact line (point in two-
dimensions).

During the simulation, we recorded the mass flux across the
non-penetrating solid wall at five different locations on the solid
wall, at, near, and far away from the contact lines, as displayed
in Fig. 7. It is shown that BC1 yields a net mass flux occurring
across the solid wall, with different mass fluxes at different loca-
tions. The mass flux fluctuates with time, especially during the first
2000 time steps when the interface is moving toward a steady sta-
tic state. Hence, in the case of moving dynamic interfaces, BC1 can
result in significant errors everywhere on the solid boundary. The
mass flux fluctuation decays to a certain level and then stays at this
non-zero level during the rest of the simulation. At the locations
away from the three-phase contact point, the steady level of the
mass flux is close to zero, both on the liquid and vapor side. At
the locations closer to the three-phase contact point, a slightly
r, KW = 0.04, kbT = 0.53.
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higher level of the mass flux appears. However, right at the three-
phase contact point, there is a much larger mass flux. Therefore, for
static liquid–vapor interfaces BC1 gives fairly good results every-
where except at the location of the three-phase contact line.

When the mass conservation boundary condition BC2 is used,
all mass fluxes on the solid wall are eliminated at every time step
during our simulations: no net mass flux is recorded, both at the
three-phase contact point and away from it. Fig. 8 shows a compar-
ison of fluid density contour lines (plotted at the average density)
with the two different boundary conditions. The results are ob-
tained at the same condition with KW = 0.04 at kbT = 0.53. In
Fig. 8, the thicker line is obtained with BC2 while the thinner line
is the result with BC1. It is seen that at the equilibrium state, the
difference of the droplet sizes with two boundary conditions is
not significant at this wetting level, even though BC1 has the error
at the three-phase contact line. Therefore, both BC1 and BC2 can
give fairly good results for static liquid–vapor interfaces. However,
the use of BC1 Does not guarantee the accurate simulation of mov-
ing contact lines. Hence, in the following simulations of moving
contact lines we only apply the mass-conserving boundary condi-
tion (BC2) for solid walls.

Next, we test the capability of the current simulations to repre-
sent different wettabilities of solid walls. According to the well-
known Young’s law of wetting, different wettabilities of solid walls
produce different contact angles at equilibrium. The Young’s law of
wetting governs the relation between fluid wettability and contact
angle as:

c cos he ¼ csv � csl ð35Þ

where he is the equilibrium contact angle, and c, csv, and csl are sur-
face tension of liquid–vapor, solid-vapor, and solid–liquid, respec-
tively. For a liquid–vapor system, c is a constant at a given
temperature, and csv and csl are determined by the molecular attrac-
tion between the solid wall and the liquid–vapor system. With our
model, the surface tension is related with the parameter KW, as
shown in Eqs. (22) and (23). Thus, the capability of the LBM to sim-
ulate different wall wettabilities is examined with the relation be-
tween equilibrium contact angle he and KW from the simulation
results.

Fig. 9 shows the fluid density contour lines of the simulated
droplets on solid walls at kbT = 0.55. The density contour lines
are plotted at the average fluid density. Fig. 9 shows that different
ropaVropaV Liquid Droplet 

Fig. 8. Comparison of droplet on a wall with boundary conditions BC1 and mass
conserving BC2, KW = 0.04, kbT = 0.53; the thicker line is obtained with the mass
conservation boundary condition BC2; the thinner line is the results of the non-
mass conservation boundary condition BC1.

Fig. 9. Interfaces of droplet on wall wit
values of KW produce different contact angles, as expected. When
the strength of solid–fluid attraction is small, the droplet is com-
pletely detached from the wall due to the relatively stronger
fluid–fluid attraction. As demonstrated in Fig. 9, the wall becomes
dry at KW = 0.02, with no liquid wetting the solid surface (it is
noted that the droplet at KW = 0.02 actually rests on the wall but
due to the finite interface thickness, the average density contour
is displaced from the wall). When KW increases beyond 0.02, how-
ever, the droplet attaches to the wall. With a further increase in KW,
the contact angle decreases further. When KW increases beyond
0.05, the droplet starts to wet the wall completely and a liquid film
appears on the surface of the wall. These results show that the
present D2Q9 model can represent the whole range of wettabili-
ties, from a completely non-wetting (dry surface), through partially
wetting, and finally to a complete wetting through variation of
only the attraction strength KW, which is in agreement with MD
simulations (Barrat and Bocquet, 1999).

Fig. 10 displays more details of the relation between KW and
contact angle, where the solid circles are the LBM results and the
line is a best linear fit of the LBM. This figure shows that the rela-
tionship between contact angle and KW is close to linear, which
agrees well with the independent studies by Yang et al. (2001)
and Zhang et al. (2004). Figs. 11 and 12 are similar results at the
different temperature, kbT = 0.53. These results show that the cur-
rent D2Q9 model has the capability to simulate different wettabil-
ities very well.

4.4. Moving contact lines in a channel

4.4.1. Simulation procedure and outline
A vapor plug in a two-dimensional channel is studied to test the

capability of the present D2Q9 model in simulating moving contact
lines. Fig. 13 is the schematic of the simulation setup, where V is
the interface velocity, ha and hr are advancing and receding contact
angle, respectively. The relative magnitudes between capillary, vis-
h different wettabilities, kbT = 0.55.
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Fig. 10. Relation between contact angle and KW, kbT = 0.55; solid points are LBM
simulations and solid line is their linear correlation.



Fig. 11. Interfaces of droplet on wall with different wettabilities, kbT = 0.53.
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Fig. 12. Relation between contact angle and KW, kbT = 0.53; solid point is LBM
simulations and solid line is their linear correlation.
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Fig. 13. A schematic of moving contact lines in channel flow: V is the interface
velocity, ha and hr are advancing and receding contact angles, respectively.
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cous, and inertia forces are represented through Reynolds number
Re, capillary number Ca, and Weber number We:

Re ¼ 2HCVnL

lL
ð36Þ

Ca ¼ lLV
c

ð37Þ

We ¼ Re � Ca ¼ 2HCnLV2

c
ð38Þ

where nL and lL are liquid density and viscosity of the fluid, c is the
surface tension, and HC is the height of the channel. As indicated by
Eq. (38), the ratio of the Weber number to the capillary number de-
fines the Reynolds number of the flow. Therefore, in the following
presentation, we only display the capillary and Weber numbers.

The present simulations are performed with the collision relax-
ation time s= 1.0 at the temperature kbT = 0.53. The surface tension
of the fluid at this temperature is c = 0.023 (Li and Tafti, 2007) and
the kinematic viscosity is m = 0.166667 (based on Eq. (14)). The
simulated channel is 1000 long and 35 wide, enclosing an initially
rectangular vapor plug inside with the rest of the channel filled
with the liquid. A periodic boundary condition is imposed at the in-
let and outlet of the channel and the no-slip boundary condition is
imposed on the two channel walls. The simulations start with zero
velocity assigned over the whole domain. To provide a motive
force, a constant body force Fo(x) = fix is applied in the axial direc-
tion, where f is the magnitude of the body force. Different Reynolds
numbers or Weber numbers are realized through applying differ-
ent f.

We perform the simulations with 18 different f values, starting
from 0.0 to 0.00091271 in an increment of 5.36888E�05. For each
case, the LBM iterations are performed until 20,000 time steps. The
recorded results show that the flows reach stationary states at
around 2300–3000 time steps at which the moving interface
shapes do not change. Fig. 14 shows the time evolution of axial
locations of the two moving interfaces at f = 0.000322133. The ax-
ial locations of the two interfaces in the channel are displayed at
two transverse locations each, one at the channel center and one
on the top wall, resulting in four lines. Each of the four lines ap-
pears linear and parallel to each other, indicating that both the
advancing and receding interfaces move at the same speed. The
slopes of the four lines have the value 0.0259 which defines the
speed V of the moving interfaces. With the speed V defined, both
capillary number and Weber number are then computed, yielding
Ca = 1.008 and We = 10.961.

Our simulation matrix is listed in Table 2, covering the range
Ca = 0–3.883 and We = 0–162.748. The stationary results presented
below are taken nominally at 20,000 time steps except when the
vapor plug is crossing the inlet or outlet at this time step.

Fig. 15 displays the stationary interface contour lines (at the
average fluid density) of the different driving forces. For clarity,
only half of the simulations are shown in the figure, starting from
f = 0 with a uniform increment of Df = 0.000107. Fig. 15a and b dis-
plays the advancing and receding interfaces, respectively. When
the diving force is zero, the two interfaces are at the equilibrium
state and give the equilibrium contact angle he = 78.1o. With the in-
crease in driving force, interface speed, capillary number, and We-
ber number all increase as shown in Table 2. Meanwhile, both
interfaces become distorted in the flow direction. When the driving
force increases to the maximum, the vapor plug becomes severely



Table 2
Moving contact line simulation summary: body force f, interface velocity V, capillary
number Ca, Weber number We, advancing angle ha, and receding contact angle hr.

Number f V Ca We ha hr

1 0 0.000 0.000 0.000 78.09 78.09
2 5.36888E�05 0.004 0.160 0.275 79.20 77.07
3 0.000107378 0.008 0.323 1.126 80.88 76.20
4 0.000161066 0.013 0.486 2.553 81.93 75.01
5 0.000214755 0.017 0.657 4.667 82.80 74.17
6 0.000268444 0.021 0.829 7.413 84.00 72.23
7 0.000322133 0.026 1.008 10.961 85.08 71.54
8 0.000375822 0.031 1.194 15.400 86.30 70.91
9 0.00042951 0.036 1.389 20.825 87.44 68.48

10 0.000483199 0.041 1.587 27.200 88.65 67.78
11 0.000536888 0.046 1.797 34.877 90.00 65.32
12 0.000590577 0.052 2.015 43.844 91.37 64.67
13 0.000644266 0.058 2.241 54.212 92.59 61.78
14 0.000697954 0.064 2.478 66.303 94.33 59.72
15 0.000751643 0.071 2.743 81.214 96.65 57.90
16 0.000805332 0.084 3.252 114.200 98.60 53.51
17 0.000859021 0.091 3.556 136.504 100.84 51.85
18 0.00091271 0.100 3.883 162.748 102.26 49.43
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elongated, as shown in Fig. 15b. It is expected that the liquid drop-
let would pinch off from the wall and the vapor bubble would be
broken with a further increase of the driving force.

In the literature, contact angle is computed either from the local
coordinates of an interface near the solid wall or based on an
equivalent circular approximation to the interface. In fact, as the
capillary number increases, the interface shape deviates consider-
ably from a circular shape. For the results shown in Fig. 15, these
two procedures to approximate contact angles can lead to a differ-
ence up to 10o even at an intermediate capillary numbers. For this
reason, all contact angles are computed based on the local coordi-
nates of an interface near the wall. Table 2 includes the computed
advancing and receding contact angles.

Table 2 shows that the advancing contact angles get larger and
larger with an increase of capillary number or Weber number.
Meanwhile, the receding contact angles become smaller and smal-
ler. To validate our simulations in detail, a comparison is made
with three existing typical theories of moving contact lines. Among
the three theories, one is the widely used hydrodynamic theory
due to Cox (1986) and one is the molecular kinetic theory by Blake
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(1993). The third theory is the linear scaling law between cos h and
Ca.

4.4.2. Comparison with Cox theory
The hydrodynamic theory for moving contact line by Cox (1986)

is based on a matching asymptotic expansion for low capillary
numbers. The leading order expression of Cox theory gives the
relation between the moving contact angle h and the capillary
number Ca as:

gðhÞ � gðheÞ ¼ Ca lnðe�1
c Þ þ OðCaÞ ð39Þ

where g(h) is a function of dynamic contact angle h, and defined as

gðhÞ ¼
Z h

0
½f ðuÞ��1 du ð40Þ

with

f ðuÞ¼2sinu q2ðu2�sin2 uÞþ2q½uðp�uÞþsin2 u�
n

þ½ðp�uÞ2�sin2 u�
o
= qðu2�sin2 uÞ½ðp�uÞþsinucosu�
n

þ½ðp�uÞ2�sin2 u�ðu�sinucosuÞ
o

ð41Þ

where q is the fluid density ratio of vapor to liquid; e is the ratio of
the microscopic slip length to the macroscopic characteristic length.
According to Cox (1986), the microscopic slip length e is not un-
iquely determined. For the current study, we use the approximation
proposed by Sheng and Zhou (1992): ec = ld/ksCa, where ld is the wall
roughness and ks is a slipping-model dependent constant. As a re-
sult, Eq. (39) becomes

gðhÞ � gðheÞ ¼ Ca lnðks=ldÞ þ Ca ln Ca ð42Þ

To solve the nonlinear equation (42), first, we numerically compute
the integration of Eq. (40) for a series of different h. For the current
study, we compute the integration at h = iDh, i = 0, 1, 2, . . ., 900 and
Dh = 0.2o, with the fluid density ratio q = 0.3014. The numerical
integration results are tabulated for g(h) versus h. For a given value
of g(h), we can find the related value of h through an interpolation
from the table. To solve Eq. (42) of Cox theory, we first find that
g(he) = 12.7191 for the equilibrium contact angle he = 78.1o from
the tabulated values. Then, we use the two constants ln(ks/
ld) = 1.9 and 2.5, separately. With each constant, we calculate the
value of g(h) for every Ca based on Eq. (42). With the value of g(h)
found for each Ca, we then find the moving contact angle h through
an interpolation from the tabulated function. Fig. 16 plots the re-
sults based on both our LBM simulations and Cox theory for the var-
iation of the moving contact angles with Capillary numbers. The
comparisons in Fig. 16 show that our LBM results are close to Cox
theory with both constants, ln(ks/ld) = 1.9 and 2.5. The variation in
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Fig. 16. Comparison between the current LBM and Cox theory for both
ln(ks/ld) = 1.9 (Cox, 1) and 2.5 (Cox, 2).
advancing angle with Capillary number is captured to within 10–
15% by the LBM results.

4.4.3. Comparison with Blake theory
Blake’s theory for moving contact line (Blake, 1993) is a kinetic

model considering molecular adsorption/desorption near a moving
contact line. The adsorbed molecules of a receding fluid are consid-
ered being replaced by the molecules of an advancing fluid at the
moving contact line. The frequency of the molecular displacement
is determined by the displacement frequency at equilibrium j0

w,
the free-energy of the initial and activated thermodynamic states,
and the adsorption sites per unit area m. The wetting velocity V is
the result of the adsorption frequency times the average distance
between two adjacent adsorption sites kb. Blake (1993) recognized
that the driving force on a moving contact line is the out-of-bal-
ance interfacial tension force due to the difference between the
moving contact angle h and the equilibrium one he. As a result,
the wetting velocity V is related to the moving contact angle h as

V ¼ a sinh½bbðcos he � cos hÞ� ð43Þ

where a and b are two constants, having the following forms:

a ¼ 2j0
wkb ð44Þ

bb ¼
c

2mbkbT
ð45Þ

The parameters j0
w, kb, and mb are the model fitting constants,

which are generally unknown and are obtained from experiments
for a specific fluid and solid wall (Blake, 1993). Fig. 17 shows the
comparison between the current LBM results and Blake theory,
where the solid line represents the result of Blake theory with
a = 0.23 and bb = 1.0 and the hollow circles represent the LBM re-
sults. The positive velocities are the results of the advancing inter-
faces while the negative velocities are those for the receding
interfaces. These results show that the current LBM can also simu-
late Blake theory very well.

4.4.4. Comparison with the linear law of cos h versus ca
The linear law of cos h versus Ca is expressed as

cos he � cos h ¼ constant � Ca ð46Þ

The linear law has been obtained analytically by different
researchers based on different points of view. The earlier work
by Cherry and Holmes (1969) can directly lead to such an equation,
as pointed out by Blake (1993). Joanny and Robbins (1990) found
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the same form of the equation holds under the condition of a
smooth solid surface. De Gennes et al. (2004) obtain Eq. (46) from
two points of view for moving contact line: a mechanical model of
viscous dissipation and a molecular kinetic model of absorption/
desorption. It is noted that in the different approaches to the linear
law, the proportionality constant in the equation is defined differ-
ently but has the same physical meaning: The constant is equiva-
lent to a friction coefficient. It should also be mentioned that
Blake theory itself can reduce to the form of Eq. (46) when
bb(cos he � cos h)� 1.

To compare our results with the linear law, we plot our LBM
data in Fig. 18 on a log–log scales, where the solid points repre-
sents LBM and the solid line is a linear correlation of the LBM.
The slope of the linear correlation gives 0.9331 which is close to
the theoretical value of unity as shown in Eq. (46).

5. Summary and conclusions

The mean-field free-energy formulation for liquid–vapor flows
is implemented on a D2Q9 lattice configuration. It is shown that
the extensively used common bounceback condition in the litera-
ture leads to an unphysical velocity at the wall in the presence of
surface forces. The magnitude of the unphysical velocity is shown
proportional to the local forces such as those arising from fluid–
fluid attraction, fluid–solid attraction, and other surface forces.
Based on Zou and He (1997), a new velocity-boundary condition
to deal with the fluid–wall interaction is proposed, which elimi-
nates the unphysical velocities. In addition, by imposing mass con-
servation, the new velocity-boundary condition has been further
refined to improve the accuracy. The current model is shown to
have the capability of successfully simulating static and dynamic
liquid–vapor interfacial flows, with and without solid walls. The
model shows very good agreement with the Laplace law of capil-
larity, and capillary wave dynamics. In particular, the current
D2Q9 model with the new boundary condition successfully simu-
lates the challenging moving contact line problem and shows good
agreement with three well established theories of contact line
dynamics.
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